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We discuss computational methods for carrying out correlated ab initio electronic structure calculations for
large systems. The focus is on two types of methods: density functional theory (DFT) and localized orbital
methods such as local MP2 (LMP2) and a multireference version based upon a generalized valence bond
reference wave function, GVB-LMP2. The computational performance of both approaches using pseudospectral
numerical methods is documented, and calculated thermochemical and conformational energetics are compared
to experimental data.

1. Introduction

Solution of the electronic Schrodinger equation, or for
relativistic systems, the Dirac equation, is fundamental to the
application of theoretical methods to chemical problems. In the
early days of quantum mechanics, accurate solutions were
limited to atoms or the H2 molecule; there was simply no way
to calculate many electron wave functions to a high level of
precision for anything more complicated. The development of
fast digital computers opened the possibility of solving the
electronic Schrodinger equation, albeit while utilizing ap-
proximations, for interesting chemical systems. Beginning with
the Gaussian suite of programs in 1970, computer codes of
increasing power and generality have been constructed and at
present are employed ubiquitously in academia and industry to
address a wide variety of questions concerning molecular
structure, energetics, and properties.

However, the computational expense of solving the Schro-
dinger equation remains a significant barrier to the deployment
of ab initio quantum chemical methods in the solution of
complex chemical problems. A principal difficulty arises from
the scaling of the calculations with the number of electronsN

in the molecule. The formal scaling of the Hartree-Fock
equations withN in the Roothaan-Hall1 formulation isN4, a
rather steep dependence. This can be reduced toN3 using
numerical methods, toN2 via integral cutoffs, and ultimately
to N ln N (or possiblyN) via fast multipole methods2-6 (although
this last reduction occurs only when the molecule is quite large).
N2 scaling allows Hartree-Fock calculations to be routinely
carried out for systems with on the order of 100 atoms. For
many (if not most) chemical problems of practical interest,
though, the self-consistent field (SCF) approximation inherent
in Hartree-Fock theory is not sufficiently accurate. A major
goal of ab initio electronic structure theory has therefore been
development of electron correlation methods that can be easily
applied to large molecules.

Traditional methods for electron correlation scale much less
favorably with system size than Hartree-Fock theory. The
conventional implementation of second order Møller-Plesset
perturbation theory, for example, has a formal scaling ofN5,
and cutoffs appear to be substantially less effective than for
Hartree-Fock theory in reducing this in practice. Furthermore,
as problems grow in size, very large amounts of disk storage
and memory are required if calculations are to be run with
reasonable efficiency. Methods based upon coupled cluster
theory, such as QCISD(T)7 and CCSD(T),8 scale asN7 (and
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require very large amounts of disk space) and hence can
presently be applied only to small molecules.

During the past decade, two new approaches to the electron
correlation problem have been developed that have led to a great
deal of progress towards the goal of large molecule applications.
The first of these, density functional theory (DFT), has
undergone an explosive surge of popularity in the last 5 years.
The computational scaling of DFT with system size is roughly
comparable to that of HF, although for DFT some numerical
integration methodology is always required. Therefore, most
of the focus in improving DFT methods has centered on
achieving higher accuracy compared to experiment for chemical
properties, and on reducing the absolute computational expense.
Recently, however, there has been considerable interest in
developing fast multipole methods for DFT,2-6 and for very
large systems the theoretical asymptotic linear scaling regime
has been reached.4

The second approach is at present much less widely used in
the chemical community. It is based upon the observation that
the orbitals in a Hartree-Fock calculation can be effectively
localized by a simple unitary transformation into chemically
understandable bonds and lone pairs. Once the orbitals are
localized, the scaling of electron correlation methods with
system size can be dramatically reduced, as suggested by Pulay
and co-workers in their work in the mid 1980s.9,10An improved,
albeit somewhat more expensive, version of the theory can be
developed based upon a multiconfigurational wave function
employing localized orbitals. The reference wave function of
choice is the generalized valence bond (GVB) approach,
pioneered by Goddard and co-workers more than 20 years
ago.11,12

The implementation of localized orbital methods in an
efficient numerical algorithm, so that the large gains in
computational efficiency available in theory could be realized
in practice, has been an arduous process. Much of our own
work13,14 has been focused on this effort. We discovered that
the replacement of conventional analytical methods for integral
evaluation with numerical algorithms allows a remarkable
reduction in the computational effort required to carry out
localized correlation methods. The resulting methodology, which
has only been fully realized in the past two years, reduces the
scaling of powerful localized correlated methods to theN2 -
N3, and is readily applicable to 50-100 atom systems using
current computational hardware.

The objective of the present article is 2-fold. First, we discuss
the different computational methods that can be used for DFT
and correlated localized orbital calculations, and we present
some timing results from our pseudospectral implementations.15

Secondly, we survey the performance of both approaches for
several important chemical properties, examining the effect of
basis set size as well as electron correlation method. In the ab
initio literature, the vast majority of systematic assessment of
the performance of correlation methods has been concerned with
small molecule bond energies, as in studies utilizing the
Gaussian-2(G2) database of Pople and co-workers.16 However,
there are an enormous number of problems of practical interest,
for example, ligand binding to proteins, the key problem of
structure based drug design, in which no chemical bonds are
made or broken. Rather, what is important are small energy
differences, arising from intermolecular interactions and con-
formational changes. While these problems are in some sense
“easier” than the computation of bond energies in that the
qualitative nature of the wave function is not being altered by
rupture of an electron pair, the level of precision demanded is

considerably greater, and the performance of correlation methods
on one type of problem may not carry over to the other. For
this reason, it is important to bring the same level of statistical
assessment to the performance of quantum chemical methods
for this sort of energy differences as has been applied to bond
energies. The results presented in this paper are only a beginning
of this effort, but they already allow a much clearer evaluation
of the accuracy of the various correlation methods than do
anecdotal comparisons of theory and experiment for a few
molecules.

The design of the paper, in which DFT and localized orbital
methods are contrasted side by side, is intended to provide a
balanced picture of the strengths and weaknesses of both
approaches. There are clearly a large class of applications for
which DFT is at present the method of choice, based upon
computational efficiency and ease of use, and the number of
such applications is likely to increase in the future as better
functionals are developed. Nevertheless, there are problems for
which DFT does not yet provide adequate accuracy, or, in some
cases, fails quite badly. For many of these cases, localized orbital
methods constitute a practical, cost-effective alternative. We
have implemented versions of both DFT and localized correla-
tion methodologies in the Jaguar suite of ab initio electronic
structure codes. When combined with a graphical user interface
allowing either type of calculation to be run conveniently, the
availability of both methodologies constitutes an excellent
starting point for the robust application of ab initio electronic
structure calculations to large systems. The growth of available
computing power, continued improvement in software imple-
mentations, and advances in theory guarantee that these tools
will become considerably more powerful and reliable in the next
decade, in our codes and in those developed in other laboratories.

The paper is organized as follows. In section 2 we briefly
discuss the underlying formalisms of DFT and localized
correlation methods. Our goal is to provide a qualitative
overview of the structure of each approach, as opposed to a
detailed exposition of the mathematics, which has been presented
in many other publications. Sections 3 and 4 discuss compu-
tational methods for solving the relevant equations, emphasizing
the numerical approach, based upon pseudospectral (PS)
methods, that we have been developing for the past 10 years.
Again, our goal is to evaluate performance as opposed to
explicate the algorithms in detail, so we present an overview
of the methods along with timing results for a variety of
molecules, basis sets, and chemical problems. Section 5
examines the accuracy of the methods as compared to experi-
mental data for thermochemistry and conformational energetics.
Finally, in section 6, the Conclusions, we consider future
directions.

2. Theoretical Formalisms

2.1. Density Functional Theory.Density functional theory
originates from the work of Hohenberg and Kohn,17 who proved
that the energy of a many electron system can formally be
expressed as a functional of the electron density. Given this
functional, the ground state densityF(r ) can be found via its
minimization, subject to the constraint that the integral of the
density over all space is unity. There are a variety of ways to
recast the equations forF(r ). From a computational point of
view, the Kohn-Sham equations,18 in which F(r ) is expanded
in an orbital basis set, are most convenient. This leads to a three-
dimensional self-consistent field equation for the density orbitals
φi(r ) of the form
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With h(r ) the one-electron kinetic/nuclear attraction operator.
Vxc(r ) is an operator derived from a universal exchange-
correlation functional,fxc, containing all of the information about
the exchange and correlation energy, whose specification defines
the particular density functional approximation that is being
employed.

The advantages of density functional theory flow from the
reduction of the many-electron Schrodinger problem to a three-
dimensional field equation. The solution of eq 1 is apparently
less complicated and expensive than conventional correlated ab
initio formulations involving huge numbers of Slater determi-
nants. The disadvantage of DFT is that one must guess the form
of fxc, which cannot be derived rigorously from first principles.
The quality of any given guess, which controls the level of
accuracy of the method, must be therefore determined by
comparing the results with experiment.

For many years, density functional calculations were carried
out predominantly using the local density approximation
(LDA).18 Within the LDA the function f xc

lda is assumed to
depend only upon the local electron density (fxc(F)) with matrix
elements between basis functionsøµ, øν of the corresponding
exchange operatorVxc(r ) being given by

In the most widely used versions,f xc
lda(F) is fit to reproduce the

uniform electron gas energy, which can be accurately calculated
from Monte Carlo calculations.19

The LDA is a qualitatively reasonable electronic structure
theory and often provides results that are comparable in quality
to Hartree-Fock theory, for example, for molecular geometries.
From a statistical point of view, however, it is not a quantita-
tively accurate theory for a broad range of molecular properties.
For example, bond energies are typically over bound by 50 kcal/
mol, and hydrogen bonding energies and geometries are grossly
in error. Thus, the LDA is not a competitor with high- level-
correlated ab initio methods.

Throughout the past 2 decades, there have been numerous
attempts to improve density functionals, primarily by incorpo-
rating corrections to the LDA based upon the gradient of the
electron density. The first major breakthrough was made by
Becke, who developed a new exchange functional20 that, when
combined with gradient corrected correlation functionals, yielded
enormously improved bond energies for a data base of small
molecule test cases. Subsequent work by Becke21 and others,22

including the Pople23 group, led to an entire family of general-
ized gradient approximation (GGA) functionals, with more or
less similar performance in comparison with experimental data.
We consider a representative example of these functionals, the
B-LYP (Becke exchange20 with Lee-Yang-Parr correlation24)
functional, below.

A second major breakthrough, in a rather different direction,
was also made by Becke.25,26 He devised a functional, based
upon adiabatic connection arguments, which incorporated an
admixture of Hartree-Fock exchange in a linear combination
with the usual density functional ingredients. By fitting a small
number of adjustable parameters, a low average error in
predicting atomization energies of molecules in the G2 data base
was obtained.26 Other properties, such as equilibrium geometries
and hydrogen bonding energies, were also improved. Again an

entire class of such functionals have been developed by Becke
and others. Below, we consider a representative example of this
class of functionals as well, the B3-LYP functional (Becke three
parameter adiabatic connection fit combined with the LYP
correlation functional).20,24,26More recently, Becke introduced
a new functional based on generalized correction terms.27 It was
shown that the expansion to third order, resulting in a 15
parameter functional, has further improved performance. This
functional was fitted against the extended G2 database.16

2.2. Localized Electron Correlation Methods.2.2.1. Local
Second-Order Møller-Plesset Perturbation Theory.Second-
order Møller-Plesset perturbation theory (MP2) is the least
expensive of the conventional ab initio electron correlation
methods, scaling formally asN5. It provides the great majority
of the correlation energy and significantly improves the calcula-
tion of many molecular properties as compared to Hartree-
Fock theory, e.g., dipole moments, equilibrium geometries, and
conformational energy differences, if a large basis set is
employed.

A localized version of Møller-Plesset perturbation theory
was systematically constructed by Pulay and co-workers9,10 in
the mid 1980s. The formal development of the theory is
straightforward. First, orbitals from a canonical Hartree-Fock
calculation are localized, via either a Boys28 or Pipek-Mezey29

localization procedure, into bond or lone pair orbitals. Then, a
local correlation space is defined for each electron pair excitation
out of the occupied space. Each electron in the pair is taken
from one lone pair or bond. The local space is defined to be
the union of atomic basis functions from each of the atoms
associated with the a lone pair or bond from which the excitation
occurs. The atomic basis functions in the local correlation space
are in all cases orthogonalized to the orbitals of the occupied
space.

To carry out local second-order Møller-Plesset perturbation
theory (local MP2, or LMP2), the first-order wave functionΨ(1)

must be calculated. The first order wave function is represented
as a linear combination of determinantsΨij

pq, each of which
has a double excitation from a pair of occupied orbitalsij to a
pair of orbitalspq in the local correlation space:

Because neither the localized occupied orbitals or the correlating
virtual orbitals are eigenfunctions of the Hartree-Fock Hamil-
tonian, it is necessary to obtain the expansion coefficients in
the first order wave function by solving a linear system of
equations of the form10

whereS is the overlap matrix among the nonorthogonal local
virtual orbitals andF is the Fock matrix. The quantityKij

pq is
the exchange integral (ip| jq).

The solution of this equation is readily accomplished via
conjugate gradient methods, which typically converge in 4-8
iterations. Solution of the linear system scales as∼(N2 - N3)
and does not require an inordinate amount of computational
effort.

The use of a localized correlation space, as opposed to the
complete set of virtual orbitals, means that the correlation energy
obtained from an LMP2 calculation is slightly different (typically
by 1-2%) than a conventional MP2 result. However, this

[h(r ) + ∫ F(r2)

|r - r2|
dr2 + Vxc(r )]φi(r ) ) εiφi(r ) (1)

Vµν
xc ) ∫ dr ((∂fxc[F]

∂F ) øµ(r)øν(r)) (2)

Ψ(1) ) ∑
igj,pq

Cij
pq Ψij

pq (3)

T ij
(2) ) K ij + FCijS + SCijF - S∑

k

[FikCkj + FkjCik]S ) 0

(4)
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difference is actually an advantage, as LMP2 eliminates much
of the basis set superposition error (BSSE) associated with
canonical MP2.30 Calculations carried out by Saebo and Pulay
have explicitly demonstrated that BSSE is effectively removed
via the LMP2 formalism.30 LMP2 calculations converge much
more quickly to the large basis set limit than do conventional
MP2 calculations. Recently, work in our own laboratory
suggests31 that similar problems arise in intramolecular interac-
tions (for example, internal hydrogen bonding in a dipeptide)
and that the local MP2 results are again preferable.

The key question with regard to the LMP2 formalism is
whether or not the reduction of the virtual space can be translated
into a practical reduction in computational effort. In the work
of Pulay and co-workers,9,10,30 such reductions were not
observed, because localization of the virtual space has minimal
impact upon the four index transform, the principal computa-
tional expense in a conventional implementation of LMP2.
However, using pseudospectral methods, the four index trans-
form can be eliminated, and this yields large reductions in the
scaling of the calculation with system size. Our implementation
of this approach is described below in section 4.

2.2.2. Localized Multireference Perturbation Theory: The
GVB-LMP2 Methodology.While LMP2 provides significant
improvements over Hartree-Fock results for most molecular
properties, and as we shall see below, is superior in some cases
to DFT as well, it is not a quantitatively accurate electronic
structure theory. Traditionally, there are two ab initio quantum
chemical formalisms providing a route to high accuracy. The
first of these is multireference configuration interaction and
related methods;32 the wave function optimized at the SCF level
consists from the start of many determinants, and the resulting
MC-SCF wavefunction is subsequently corrected for dynamical
correlation effects via, for example, single and double excita-
tions. The second approach, which retains a single determinant
reference but models triple and quadruple excitations via a quite
effective exponential ansatz, is based upon an approach origi-
nally designated coupled cluster theory.33 Two rather similar
variants of this method, CCSD(T),8 and QCISD(T),7 are
presently in wide use.

For the past decade, there has been a steadily increasing
preference of professional quantum chemists for coupled cluster
methods as opposed to the multireference methods, for several
reasons. First, the coupled cluster approaches can readily be
structured as a well defined “model chemistry” in the sense of
Pople and co-workers, whereas multireference methods require
selection of a particular MC-SCF reference state that is often
perceived as arbitrary (or at least difficult to determine without
doing quite a few computational experiments). Secondly,
significant effort has been expended in developing highly
efficient CCSD(T) and QCISD(T) algorithms, the last of which
is encoded in the widely used Gaussian34 series of programs.
The ACES II package35 provides a full spectrum of coupled
cluster methods, including CCSD, CCSD(T), and CCSDT on a
variety of wave functions. The scaling of either coupled cluster
method with system size is∼N7, which restricts applications
to small molecules. However, MR-CI methods that are system-
atic, such as the CASSCF36 approach (in which an “active
space” is designated and all electrons in the active space can
be distributed in all possible arrangements among the active
space orbitals) scales exponentially with the size of the active
space and, hence, are also restricted to small molecules. Finally,
QCISD(T) methods have been shown to yield accurate and
robust results in a wide variety of small molecule test cases.
For example, bond energies can be computed to∼1-2 kcal/

mol average error via the use of a single adjustable parameter,
in the G2 theory prescription of Pople and co-workers.16,37 In
contrast, few systematic studies over a large database of
molecules have been carried out with MR-CI approaches.

The recent development of multireference methods in which
the CI step is replaced with perturbation theory, such as the
CASPT2 approach of Roos and co-workers,38 has diminished
the cost of the MR approach, although the exponential scaling
with active space size remains, and the MP2 step scales asN5.
Nevertheless, CASPT2 has been applied very effectively to the
calculation of excited state properties,38 and it is presently one
of the most reliable methods for obtaining these for small to
medium sized molecules.

While conventional multireference perturbation algorithms
represent a significant step forward, they are still not suitable
for routine application to systems in the 30-100 atom range,
where much of interesting chemistry takes place. For MR
methods to address such problems, they must be coupled with
localized correlation methods. The perturbation theory part of
the methodology can be transplanted from the LMP2 formalism
of Pulay and co-workers10,39,40 in a straightforward fashion.
However, the MC-SCF component of the algorithm has to be
modified substantially from a CASSCF type of wave function.
Fortunately, a robust and generally applicable localized MR
method was developed more than 20 years ago by Goddard and
coworkers.12 This method, the generalized valence bond (GVB)
approach, automatically produces orbitals localized on bonds
and lone pairs in the context of a self-consistent wave function.
Furthermore, the computational scaling with system size of the
two main versions of the method-GVB-PP (perfect pairing)12

and GVB-RCI (restricted configuration interaction)41scan be
reduced to theN2-N3 range, as described in section 4. Finally,
work by several groups, principally those of Messmer42,43 and
Pulay,39,40 has shown that a GVB reference wave function
delivers excellent performance in a MR perturbation theory; the
most sophisticated GVB-RCI-MP242,43 approach yields results
comparable to that of CASSCF at a much lower cost.

The combination of GVB self-consistent field methods with
localized perturbation theory suggests that, in principle, MR-
based methods cannot only be made competitive with coupled
cluster approaches, but that they may actually be able to produce
superior accuracy at a much lower computational cost. However,
there are formidable practical problems to implementing GVB-
LMP2 calculations in a sufficiently robust fashion that it can
be truly viewed as an automatic model chemistry, which can
be applied to an arbitrary molecular problem without expert
user intervention. It is also technically quite challenging to
realize the potential enhancements in computational performance
without sacrificing accuracy; if there are significant random
numerical errors, the exercise has lost its purpose, which is the
development of chemically accurate methods capable of reliably
treating large molecules. Despite these difficulties, the progress
that will be described below is quite substantial. The results
we present at the very least suggest that the goal stated above
is within reach in the next few years. In contrast, it is not at all
obvious how the scaling of the competitive QCISD(T) or CCSD-
(T) can be reduced much belowN7. Localized methods have
been developed for these approaches,44 but the performance
reported to date indicates only a marginal bottom line improve-
ment in total CPU time over conventional algorithms. Of course,
this does not preclude a novel attack on the problem leading to
a qualitative reduction in computational effort in the future.

1916 J. Phys. Chem. A, Vol. 103, No. 13, 1999 Friesner et al.



3. Numerical Implementation of Density Functional
Theory

3.1. Introduction. In the Kohn-Sham formulation of density
functional theory,18 the electron densityF(r ) is represented by
the occupied orbitals obtained from the solution of eq 1,

In the B-LYP version of gradient corrected density functional
theory,20,24the exchange-correlation potentialVxc(r ) has matrix
elements of the form

with a corresponding equation forâ spin. This equation is a
generalization of eq 2 withfxc now a functional of the density
and gradient of the density.

Most approaches to the solution of eq 1 involve expansion
of the density orbitals in terms of atomic basis functionsø j,

In Gaussian,34 DGAUSS,45 and Jaguar,15 the basis functions
used are the standard contracted Gaussian functions of conven-
tional quantum chemistry. Other programs, such as DMOL46

and ADF,47 employ Slater orbitals or numerical orbitals.
If an atomic orbital expansion of the density orbitals is

substituted into eq 1, standard manipulations produce a set of
equations very similar to those of the Roothaan-Hall formula-
tion of Hartree-Fock theory. The effective Fock operatorFDFT

is given by,

with h and J the one-electron and Coulomb operators. The
Kohn-Sham eq 1 is solved using standard iterative techniques,
such as direct inversion in the iterative subspace, typically in
5-10 iterations (although DFT is more difficult to converge
than HF, due to the smaller size of the HOMO-LUMO energy
gap). The computationally demanding step in this process is
assembly of the Coulomb and exchange-correlation operators
from the new guess for the density orbitals at each iteration.
We consider each of these steps below.

3.2. Overview of Computational Methods for Density
Functional Calculations. 3.2.1. Assembly of the Coulomb
Operator. Efficient calculation of electrostatic interactions is
one of the core problems of modern computational physics. It
is therefore not surprising that several powerful algorithms have
been developed for this purpose. The quantum chemical
electronic structure problem requires computation of the interac-
tion between continuous charge distributions, as opposed to the
point charges that are typically relevant to classical molecular
mechanics simulations. Nevertheless, the two problems have
considerably similarities, and there has been significant bor-
rowing from one problem to another.

If the density orbitals in the Kohn-Sham equation are
expanded in a finite basis of AO functions (R,â,µ,ν), the
Coulomb operator from eq 8 has the form

with FR,â the AO density matrix.

Following is a brief listing of the major strategies that have
used to evaluate eq 9: (1) The simplest approach is to explicitly
evaluate all of the relevant two center electron repulsion integrals
(Râ|µν) and assembleJµν directly as written in eq 9. This is
the method used in the Gaussian system34 of programs.
Formally, there areN4 integrals to evaluate; however, the use
of integral cutoffs readily reduces this asymptotically to∼N2.

(2) The densityF(r ) can be expanded in a set of auxiliary
basis functionsΦγ

and the matrix elementJµν can then be expressed as

This is the approach taken in two codes that have their origin
in the laboratory of Dennis Salahub, DEMON48 (the current
code from the Salahub laboratory), and DGAUSS45 (now
distributed by Oxford Molecular). This method has a formal
scaling of N3, which also reduces toN2 by using cutoffs.
However, the scaling prefactors, and rate of reaching the
asymptoticN2 limit, can be different for the two method. The
three center Coulomb integrals in eq 11 are in principle
considerably less expensive to evaluate per integral than the
four center terms that dominate the evaluation of eq 9. On the
other hand, there are issues concerning the accuracy and stability
of the fitting procedure used to generate the density expansion.
The performance of any given implementation of this approach
must be judged by computational experiments.

(3) Solutions to Poisson’s equation can be employed to
generate the Coulomb field, and numerical integration methods
then can be used to evaluate the integrals in eq 11. This is the
approach taken in the DMOL46 (distributed by MSI, Inc.) and
ADF (developed in the research group of E. Baerends);47 it is
also used by Becke in his NUMOL49 code, which has the
additional feature of making no use of conventional basis set
expansions. The preponderant use of grid-based methods can
lead to an efficient code, particularly if cutoffs are properly
implemented. The efficiency of the method depends upon how
many grid points per atom are needed to achieve stable and
accurate results. Again, this is difficult to specify in advance;
the tradeoffs of speed versus accuracy have to be documented
in numerical experiments, comparing against converged results.

(4) The pseudospectral construction of the Coulomb operator
proceeds by calculating the Coulomb fieldJ(r) on a grid{g},
multiplying a basis functionRµ(g) by J(g), fitting the product
to an auxiliary basis expansion via least squares, and projecting
the result onto the basis set. The fitting and projection back to
basis functionν can be represented50-54 by the operatorQν(g)

The assembly ofJ(g)

is achieved using the three center one electron integralsARâ,
which are very inexpensive to evaluate.

FR(r ) ) ∑
i

φi
R/(r )φi

R(r ) (5)

(Vxc
R )µν ) ∫f FR

φµφν + [2f γRR∇FR + f γRâ∇Fâ] dr (6)

φi(r ) ) ∑
j

Cji øj(r ) (7)

FDFT(r ) ) h(r ) + J(F(r )) + Vxc(F(r ),∇F(r )) (8)

Jµν ) ∑
R,â

FR,â∫R(r1)â(r1)µ(r2)ν(r2)

r12

) ∑FRâ(Râ|µν) (9)

F(r) ) ∑
γ

PγΦγ(r ) (10)

Jµν ) ∑
γ

Pγ∫ µ(r1)ν(r1)Φγ(r2)

r12

(11)

Jµν ) ∑
g

Qν(g)J(g)Rµ(g) (12)

J(g) ) ∑
Râ

FRâ∫ øR(r )øâ(r )

rg - r
dr ) ∑

Râ

FRâ ARâ(g) (13)
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(5) All of the above methods exhibitN2 scaling asymptoti-
cally. In order to reduce the scaling further, toN ln N or even
N, multipole expansion methods must be used. Recent work2-6,55

in the development of a fast multipole method specialized for
continuous charge distributions has demonstrated the first
practical implementation of this strategy. For very large systems,
on the order of hundreds or thousands of atoms, a significant
reduction in computational effort is provided. Multipole methods
can be used in conjunction with any of the four strategies
discussed above.

What is the best strategy for evaluation of the Coulomb
operator? The individual approaches described above are not
the only ones possible; the various techniques can be combined
together to produce new algorithms as well. A formal analysis
of the accuracy of any particular implementation is not feasible.
The only way to determine performance is to carry out a set of
test calculations for which converged benchmark results (pro-
duced using, for example, completely analytical methods or very
large numerical grids) exist. It is critical to assess the quality
of the results and efficiency with which they have been produced
simultaneously; obtaining high efficiency is trivially accom-
plished simply by sacrificing accuracy or reliability (for
example, by drastically reducing the number of grid points in a
grid-based method).

3.2.2. Exchange-Correlation Functional: Local and Gradient
Corrected Terms.For the B-LYP functional,20,24 the only term
required beyond the Coulomb and one electron terms is the
matrix element of the exchange correlation potentialVµν

xc in eq
6. This potential is defined by the exchange correlation
functional fxc(F,∇F) a functional of the densityF and gradient
of the density in nonlocal versions as discussed above. There
are two widely used approaches to the evaluation ofVxc matrix
elements. The first is numerical integration, carried out by
expressing the basis functionsµ and ν and the functional on
the grid, multiplying, and summing over grid weights. This
requires design of an accurate numerical integration scheme
(grid points and quadrature weights), of which several have been
proposed in the literature. This approach is used in Gaussian,34

DMOL,46 ADF,47 and Jaguar.15 The second approach is expan-
sion of the exchange-correlation functional in a set of auxiliary
basis functions (typically Gaussians) followed by computation
of three center overlap integrals. Methods along these lines are
presently implemented in DGAUSS45 and DEMON.48

3.2.3. Exchange-Correlation Functional: Hartree-Fock
Exchange Terms.For the B3-LYP functional,20,24,26 it is
necessary to calculate matrix elements of the Hartree-Fock
exchange operatorKµν in addition to theVxc terms discussed
above. Several of the codes mentioned previously, DMOL,
DGAUSS, DEMON, and ADF, do not possess this capability.
There are numerous approaches to the evaluation ofKµν
presently in the literature. The first is straightforward summation
over analytical integrals:

as is carried out in Gaussian and other conventional quantum
chemistry codes. The second is the pseudospectral formulation
of the exchange operator:

Qµ(g), AνR(g), andRâ(g) are as defined above in the pseudospec-
tral formulation of the Coulomb matrix. More recently, linearly
scaling methods have been developed for the calculation of the
exchange matrix.56-59

3.3. Pseudospectral Implementation of Density Functional
Theory: Methods and Results.3.3.1. Computational Methods.
Over the past several years, we have been developing a robust
implementation of both gradient-corrected and adiabatic con-
nection DFT methods. The energies and structures obtained have
been extensively tested against results from Gaussian 92 and
from our own codes using analytic integration, with agreement
within a few tenths of a kcal/mol being obtained when dense
exchange-correlation grids are used to converge the DFT
operators in both approaches. The timing results we present
below can therefore be taken to represent reliable results for
the specific basis set in question (indeed, the errors due to basis
set incompleteness and the inherent approximations of the DFT
methods are in all cases much larger than any noise in the PS
calculations). All calculations reported use Jaguar version 3.5.15

As stated above, we employ now standard methods for
carrying out numerical quadratures to evaluate the exchange-
correlation operators, based upon the original approach proposed
by Becke.20 However, we have made modifications in the details
of the implementation that result in significant reductions in
computational effort. The use of effective cutoffs is critical in
obtaining optimal performance, and this must be combined with
utilization of matrix multiply routines so as to drive assembly
of the exchange-correlation functional at peak megaflop rates.
The most important improvement we have made is the use of
multigrid methods so that the exchange-correlation operator
can be evaluated less frequently on the densest mesh. This
algorithm will be described in detail in another publication.

Calculation of the Coulomb and Hartree-Fock exchange
operators for the adiabatic connection methods is carried out
using the standard PS algorithms as described above. However,
for generalized gradient calculations we have accelerated the
computations in two ways. First, the Hartree-Fock exchange
assembly can be turned off, thus saving a significant amount
of computation time (in contrast to conventional quantum
chemical methods, where assembly is relatively trivial compared
to integral generation). Secondly, we have implemented a fast
multipole algorithm specifically tailored to the PS approach.
Briefly, we use atom-centered multipoles and calculate the
Coulomb field by expanding theAµν(g) three-center one-electron
integrals in these multipoles. The use of atom-centered-only
multipoles allows for significant reductions in CPU time to be
achieved even for relatively small molecules (in contrast to the
alternative cell multipole methods, which require large systems
to display any effects). The reason is that there are a large
number of exponent pairs contributing to the integral whose
product center is very close to a particular atom (for example,
all pairs formed from one large exponent and small exponent),
and in this case the multipole expansion converges very rapidly
and will yield accurate Coulomb fields as little as 2-3 Å from
the product center. We have extensively tested the accuracy of
the multipoles, and have set the tolerance to converge the
energies better than 0.05 kcal/mol as compared to the results
when multipoles are not employed. This methodology will be
described in detail elsewhere.

3.3.2. Results.We present DFT timing results for a wide range
of molecules (illustrated in Figure 1a-f) in Tables 1 and 2.
The examples include a number of biologically interesting
organic molecules (porphine, bacteriopheophytin (BPh), and
paclitaxel), an inorganic Ge containing system, and an open-

Kµν ) ∑
Râ

FRâ(µR|νâ) (14)

Kµν ) ∑
g

Qµ(g)Kν(g); Kν(g) ) ∑
R

AνR(g)σR(g);

σR(g) ) ∑
â

Râ(g)FRâ (15)
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shell (spin state 11) diiron system that is a model for the active
site of soluble methane monooxygenase (sMMO). As discussed
above, we have chosen the B-LYP method as representative of
the gradient corrected DFT approaches and B3-LYP as similarly
representative of the adiabatic connection methods. Single-point
energy and analytical gradient timings are presented in Table

1, and for a subset of molecules, analytical second derivative
timings are presented in Table 2.

For the single-point energy and gradient calculations, timings
for two basis sets are given: the 6-31G* basis set of Pople and
co-workers and the cc-pVTZ(-f) (without f functions) basis of
Dunning.60 The former, a double-ú plus polarization (DZP) basis

Figure 1. (a) Porphine. (b) Bacteriopheophytin. (c) C34H38O4Si2Ge. (d) Paclitaxel. (e) C42H48. (f) Methane monooxygenase active site model.
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set, is typically used for geometry optimizations and for
approximate calculation of relative energetics. The latter,
containing highly contracted functions at the triple-ú, double
polarization (TZDP) level, provides high quality thermochemical
energy differences. All calculations were converged to standard
Jaguar convergence (less than 5.0× 10-5 hartree energy change
between iterations, and less than 5.0× 10-6 RMS density matrix
element change between iterations). Single-point timings begin
the SCF iteration cycle from the standard initial guess routines
in Jaguar. While the cc-pVTZ(-f) calculations used converged
6-31G* wave functions as initial guesses, the times presented
include the time for 6-31G* convergence. All molecules were
run with C1 symmetry except for C42H48, which was run with
Cs symmetry. The LACVP** basis was used for Fe and the
LACVP* basis was used for Ge.

The total CPU time for geometry optimization depends upon
the initial guess and the quality of the geometry optimizer as
well as the average computation effort to evaluate a single
gradient cycle. Because our focus in the present paper is on the
efficiency of the electronic structure algorithms, we therefore

present only average CPU timings for a gradient and energy
cycle for each molecule considered. We should point out that
obtaining convergence with any sort of approximate numerical
method (which includes any of the numerical integration
techniques used in DFT, as well as pseudospectral technology)
requires considerable care in the design of the optimizer, as some
level of noise is invariably present in the gradient. We have
invested a considerable effort in ensuring that this problem is
handled in our code, the details of which will be presented
elsewhere. Here, we note only that preliminary results indicate
that the number of geometry optimization steps required in our
implementation is comparable to that observed in analytically
based programs such as Gaussian.

A number of interesting observations can be made concerning
the timing results presented in Table 1. First, the B-LYP
calculations are roughly twice as fast as the B3-LYP calculations
for the same molecule. This is due principally to two factors
that differentiate the B-LYP computations: elimination of the
Hartree-Fock exchange assembly and use of the fast multipole
routines to assemble the Coulomb operator. For ultralarge
systems (which we have not examined here), the latter factor
would lead to significantly larger timing differentials. Second,
there is a substantial dependence of the timing results not only
on molecular size and number of basis functions, but also on
molecular shape: the CPU time for C42H86, a linear carbon
chain, is substantially less than that for paclitaxel (a quasi, three-
dimensional molecule) despite the fact that the number of basis
functions in each calculation are comparable. This is due to the
increased number of neighboring basis functions at higher
dimensionality that are not eliminated by cutoffs. Such effects
must be incorporated into any scaling analysis of performance
(which we do not attempt here). Third, the average SCF+
gradient time is comparable to the single point CPU time. This
apparently counterintuitive result is explained by the fact that
for a typical geometry optimization step, the wave function from
the previous geometry is used as an initial guess, so that the
number of SCF iterations is roughly half of what is required
when converging from the initial guess.

Timings for second derivative calculations are presented in
Table 2. The vibrational frequencies obtained from our analytical
second-derivative methods uniformly agree with standard

TABLE 1: CPU Times (Minutes) of Single-Point Energy and Average Energy+ Gradient Times for Density Functional
Calculations with Jaguar v 3.5 on an SGI Irix62-r10k Workstation

molecule basis set N basis SCF iterations SCF-time average SCF+ gradient time

B-LYP
porphine 6-31G* 388 10 23 27
sMMO active site 6-31G** 623 19 217 167
C34H38O4Si2Ge 6-31G* 653 10 95 100
C42H86 6-31G* 802 8 46 61
paclitaxel 6-31G* 1032 11 207 216

B3-LYP
porphine 6-31G* 388 10 39 43
sMMO active site 6-31G** 623 17 337 259
C34H38O4Si2Ge 6-31G* 653 9 179 210
C42H86 6-31G* 802 8 78 105
paclitaxel 6-31G* 1032 10 421 472

B-LYP single point
porphine cc-pVTZ(-f) 678 6 106
BPh cc-pVTZ(-f) 1172 7 616
C42H86 cc-pVTZ(-f) 1740 8 394
paclitaxel cc-pVTZ(-f) 1885 10 1428

B3-LYP single point
porphine cc-pVTZ(-f) 678 5 191
BPh cc-pVTZ(-f) 1172 7 950
C42H86 cc-pVTZ(-f) 1740 6 546
paclitaxel cc-pVTZ(-f) 1885 8 2674

TABLE 2: CPU Times (Hours) for Density Functional
Frequency Calculations with Jaguar v 3.5 on an SGI
Irix62-r10k Workstation. All Molecules Were Run with C1
Symmetry

molecule N basis basis method time

porphine 388 6-31G* B-LYP 27.2
porphine 388 6-31G* B3-LYP 33.5
BPh 656 6-31G* B-LYP 114.9

TABLE 3: Comparisons of CPU Times for Jaguar and
Gaussian 92. All Timings Are in Hours Using a 125 MHz
HP 735 Workstation

molecule
basis
set

basis
functions method Jaguar

Gaussian
92

alanine 6-31G* 344 B-LYP 0.7 9.2
tetrapeptide B3-LYP 1.2 9.0

porphine 6-31G* 388 B-LYP 1.0 13.0
B3-LYP 1.6 11.8

porphine cc-pVTZ(-f) 678 B-LYP 4.7 84.4
B3-LYP 9.6 81.9

paclitaxel 6-31G* 1032 B-LYP 1.0 25.0
B3-LYP 1.7 25.0
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methods61 to within 1-2 cm-1. Details of this methodology will
be described elsewhere.

The most important point of the data in Tables 1 and 2 is
that DFT single-point, geometry optimization, and frequency
calculations can now be carried out routinely for large molecules
using high quality basis sets with a relatively inexpensive
workstation. The widespread extension of high quality quantum
chemical methods to systems in the 30-200 atom range is
therefore possible. While calculations on ultralarge systems,
facilitated by fast multipole methods, are certainly feasible, and
represent an important research direction, there is a lot of
interesting chemistry that is now accessible in these more modest
regimes that was previously out of range of most laboratories.
The next 5 years will see the exploitation of this capability, in
both our codes and those of others, and we believe this will
have a qualitative impact upon the usefulness of ab initio
methods, for example in problems of industrial interest.

In Table 3, we present comparisons of computational ef-
ficiency of the DFT methods in Jaguar with Gaussian 92/DFT.
Note that we have been unable to make comparisons with
Gaussian 94 due to lack of access to this program. The Jaguar
timings are approximately 5-15 times faster than those obtained
from Gaussian for adiabatic connection based (B3-LYP) cal-
culations and 10-25 times faster for gradient corrected (B-LYP)
calculations The greater ratio for the latter arises primarily from
the elimination of the exact exchange calculation, which adds
relatively more CPU time in PS methods than in conventional
ones, and the multipole methodology described above. All of
the timings presented, other than for paclitaxel, are for single
point SCF calculations, using the default single-point cutoffs
of 5×10-5 hartrees in both programs. The “fine” DFT grid
option in Gaussian was employed which is necessary for
accurate energies of large molecules (a comparable setting is
used in Jaguar for the DFT grid). For paclitaxel, we were unable
to converge Gaussian using the default cutoffs. The timings
shown are for tight cutoffs and represent average CPU time
per SCF iteration, as opposed to total SCF time. We have
reported the data in this fashion because when tight cutoffs are
imposed, Gaussian requires a considerable number of additional
SCF iterations, which would bias the comparison. Finally, we
have run one comparison of average SCF plus gradient timings,
for the alanine tetrapeptide, resulting in CPU ratios of 8.0 for
B3-LYP and 15.8 for B-LYP, which are comparable to the
single-point ratios presented.

4. Localized Orbital Methods. Computational
Implementation

4.1. Local MP2. The key to reducing the computational
scaling with system size of LMP2 calculations lies in the
construction of the two electron integrals over molecular orbitals,
(ip| jp) in eq 16 below. In conventional quantum chemical
methods, this is accomplished via a four, index transform from
integrals over AO basis functions (µν|Râ)

which is in practice carried out in four steps:

The formal scaling of this algorithm isnN4, wheren is the
number of occupied orbitals to be correlated andN is the basis
set size. Asymptotically, cutoffs can reduce the first step of the
transform tonN2 and the second step ton2N2. However, the
asymptotic limit is reached very slowly in practice, particularly
for large basis sets, which are necessary if highly accurate
evaluation of the correlation energy is to be carried out. The
use of a localized virtual space has no impact on the first two
steps of eqs 17 and 18, although it can be used to reduce the
scaling of the last two steps. These are typically smaller in
magnitude in practical problems, however, due to the fact that
n , N.

In the PS formulation of LMP2,13 the two electron matrix
elements over MOs are computed directly via the formula:

In a canonical MP2 context, this has a formaln2N3 scaling,
no better than that of conventional methods. However, LMP2
allows the virtual indicespq to be restricted to the size of the
localized correlation spaceNv, leading to a scaling ofn2NNv2.
Since the last of these does not grow with system sizeM, the
overall formal scaling is∼M3. Formation of the intermediate
quantities in eq 21, such asAij(g), also scales in this regime. In
practice, the algorithm does somewhat better than the formal
analysis, scaling as∼M2.5.

Once the two electron integrals over MOs are formed and
stored on disk (disk storage is drastically minimized due to the
local correlation space restriction; the scaling with basis set size
is only N2), eq 4 must be solved iteratively to yield the first-
order wave function. Conveniently, this process also has a formal
scaling of M3, and typically converges quite rapidly (6-8
iterations) if appropriate numerical techniques, again based upon
methods suggested by Pulay and co-workers,9,10 are imple-
mented.

The numerical accuracy of the PS implementation of LMP2
is a serious issue, which we have examined in considerable
detail. As in the case of HF or DFT calculations, PS methods
need to be supplemented with analytical calculation of the largest
terms. Here, those terms are selected on the basis of which
functions have large amplitudes in the appropriate localized
wave functions. Furthermore, it is necessary to optimize the
grids and auxiliary fitting basis to yield accurate results for the
terms that appear in MP2, as opposed to HF, calculations.
Testing of the methodology has been carried out by comparisons
with the MOLPRO code of Werner and co-workers62 for a series
of test cases that include intermolecular binding energies and
conformational energy differences. For a total of 100 such test
cases, errors are typically less than 0.03 kcal/mol. This, along
with the successes in comparing with experimental data
described below, leads to a high degree of confidence in the
robustness of the numerical methods. In contrast, there have
been other proposals for accelerating MP2 calculations via
numerical methods (all of which involve auxiliary fitting basis
sets)63 where a few reasonable test results for small molecules
have been presented, but systematic demonstration of the
reliability of the numerical approximations have not yet been
given. In our experience, a large suite of comparisons is essential

K ij
pq ) (ip| jq) ) ∑

µνRâ

Cµi CνpCRj Câq(µν|Râ) (16)
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before the method can be used on real problems where the
answer is not known in advance.

Once the numerical accuracy of the method is established,
the computational efficiency can be examined. In addition to
the single-node workstation version of LMP2, a parallel
implementation has been developed64 for the IBM SP2, which
allows calculations to be carried out on very large systems.
Tables 4-7 present timing results for the serial and parallel
versions, examining a range of molecular sizes and basis sets
and comparing with an efficient canonical MP2 implementation
in Gaussian 92.34 Even for a relatively small molecule, such as
piperidine (237 basis functions), a factor of 10 reduction in
computational effort is obtained as compared to a Gaussian 92
calculation. For larger molecules, using estimations based upon
the scaling with basis set size established in ref 13 and presented
in Table 4, a CPU ratio of 2-3 orders of magnitude is
approached rapidly. These results demonstrate that new areas
of chemistry-molecules in the 30-100 atom range-are opened

up to the MP2 level of theory with large basis sets. The utility
of this level of theory for various chemical problems will be
examined below.

4.2. LMP2 Gradients.We have implemented15,65the LMP2
gradients associated with PS-LMP2 described above. The
gradient formulation follows the same principle of producing
local derivative integrals and the right-hand side of the CPHF
equation as in the energy formulation. In addition, the pseu-
dospectral CPHF equations have been implemented using PS-
HF and PS-HF gradient techniques. LMP2 gradients have the
unique capability of optimizing systems for which BSSE effects
can obscure the correct trends, such as in intermolecular
geometries.

4.3. GVB-LMP2. We have developed14 the formalism of
GVB-LMP2 based upon a synthesis of the theoretical develop-
ments of Pulay and co-workers.10,39 First, a GVB-PP wave
function is obtained using the usual SCF algorithms; orbitals
not correlated at the GVB level are then localized via Boys or
Pipek-Mezey localization. Then, doubly excited configurations
starting from the GVB-PP wavefunction are constructed. Each
of these configurations contains 2N determinants; this large scale
internal contraction of the wave function retains the efficiency
of the LMP2 method while yielding higher accuracy. Assembly
of the matrix elements among these excited GVB configurations
is more complicated than for the usual HF configurations, but
does not greatly add to the computational cost per integral.
Similarly, the equations for the first-order wave function, again
solved iteratively, are analogous in structure to those of LMP2,
although different in details. The major increases in computa-
tional expense as compared to LMP2 come from (a) the
necessity to compute the GVB-PP wave function rather than
HF, (b) the doubling of the number of occupied orbitals, due to
the fact that in GVB-PP methods there are two orbitals per
electron pair rather than one, (c) the greater number of iterations
required to converge the solver, due to the higher complexity
of the wavefunction. These factors lead to a factor of 5-10
slowdown, as is shown in Table 6, and an increase in the scaling

TABLE 4: CPU Times (minutes) for Pseudospectral HF and LMP2 Compared to Gaussian 92 HF and MP2.Nbas is the
Number of Basis Functions andNocc is the Number of Occupied Orbitals Correlated

molecule Nbas Nocc T-G92HF T-PSHF T-G92MP2 T-LMP2

cc-pVTZ basis IBM-370a

1,3-butadiene 146 11 25 10 50 15
methyl acetate 169 15 51 18 134 23
butanone 197 15 72 35 210 30
piperidine 237 18 170 43 1037 55

6-31G** basis IBM-580b

alinine 160 23 13 5 34 17
leucine 200 27 26 10 90 30
arginine 250 35 37 17 234 50
Si4Me10 392 43 120 30 1740 154
porphine 430 56 167 60 1800 270

a G92-MP2 and PS-LMP2 scaling exponents for this set are 4.9 and 2.6, respectively.b G92-MP2 and PS-LMP2 scaling exponents for this set
are 4.0 and 2.8, respectively.

TABLE 5: Pseudospectral LMP2 Parallel Performance. Times in Seconds, with Speedups in Parentheses Followinga

molecule basis set basis functions 1 2 4 8 16

caffeine 6-31G** 260 2388(1.0) 1250(1.9) 681(3.5) 372(6.4) 225(10.6)
alanine pentapeptide 6-31G** 510 26409(1.0) 12992(2.0) 6535(4.0) 3353(7.9) 1827(14.5)
caffeine cc-pVTZ(-f) 412 11225(1.0) 5584(2.0) 2876(3.9) 1560(7.2) 912(12.3)
alanine tetrapeptide cc-pVTZ(-f) 658 45110(1.0) 23797(1.9) 11527(3.9) 6041(7.5) 3398(13.3)
alanine decapeptide cc-pVTZ(-f) 1010 82108(1.0) 41259(2.0) 21662(3.8)

a Speedups are in comparison to the one-node case for all except alanine decapeptide, which is in comparison to the four-node case.

TABLE 6: CPU Times (Minutes) for Pseudospectral GVB
(T-GVBg** for 6-31G** Basis, T-GVBcc for cc-pVTZ(-f)
Basis Using the 6-31G** Initial Guess), Exchange Integral
Generation (T-Kij), and Iterative Solve (T-Solv) on a Single
IBM-SP2 390 Thin Node

molecule Nbas Npair T-GVBg** T-GVBcc T-Kij T-Solv

alanine dipeptide 338 29 222 793 213 393
methylcyclohexane 287 21 76 550 107 103
cyclohexane 246 18 43 340 67 81
methylvinyl ether 146 12 12 83 16 30

TABLE 7: Basis Size, CPU Hours (SGI-R10000 Single
Processor), Disk Usage (Gigabytes) for J2 Components of
the Cage C20 Isomer

method basis functions
CPU

time (h)
disk

use (GB)

LMP2 cc-pVTZ(-f) 460 5.7 0.7
LMP2 ccpVTZ++ 1040 59.8 7.2
GVB-LMP2 cc-pVTZ(-f) 460 95.5 4.5
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from N2.5 to N3. Timing and and disk usage for GVB-LMP2
calculations using 460 basis functions are provided in Table
7.

A significant improvement in the theory can be made by
replacing the GVB-PP reference wave function with the superior
GVB-RCI wave function,41 in which excitations within GVB
pairs are allowed. GVB-RCI is particularly important in dealing
with open-shell systems as it allows correct treatment of spin
couplings. Work on this version of the theory is currently in
progress.

4.4. Resonance and Delocalization of the Virtual Space.
Localized orbital methods work best when chemical bonds and
lone pairs are clearly defined for every electron in the molecule.
However, some chemical structures are best thought of as
containing an admixture of several bonding structures. Benzene
is an obvious example, but resonance is ubiquitous in chemistry.
For example, the amide (peptide) group has a strong resonance
with a quaternary nitrogen configuration as is shown in Figure
2; the carboxylic acid group has a less important resonance
depicted in Figure 3. Finally, transition state structures possess
inherent ambiguity concerning which atoms are bonded to which
other ones. In such cases, one has to be extremely careful to
make sure that localized orbital methods provide an accurate
description of electron correlation, and also that this description
remains constant for all calculations. Furthermore, whatever
schemes are implemented have to be automated, otherwise the
methods will be accessible only to expert users. What is really
needed is an expert system, able to examine any chemical
structure and make the appropriate modifications of the theory.

From a number of numerical experiments, we have developed
a set of heuristic rules concerning how to effectively deal with
resonance and other forms of delocalization. In some cases, for
example, the benzene ring, the results are surprisingly unaffected
by the use of a localized virtual space, despite the strength of
the underlying resonance. For example, a geometry optimization

of benzene using local MP2 methods breaks symmetry, local-
izing the double bonds and yielding alternating unequal bond
lengths. However, the difference is quite small. Furthermore,
if the asymmetric structure is substituted into a canonical MP2
program (which preserves symmetry), the energy difference
from the symmetric structure is less than 0.05 kcal/mol. In a
real system, the benzene ring would be surrounded by other
molecules, creating an inhomogeneous field, and hence breaking
symmetry.

In other cases, proper treatment of resonances is crucial. A
good example is the lone pair on the nitrogen in the peptide
group (Figure 2). In any localized orbital implementation, it is
necessary to examine each occupied localized orbital and define
the atoms to which it is localized. Some sort of numerical
criterion has to be used to distinguish bonds from lone pairs.
We examine the ratio of the wavefunction amplitude on the
two atoms with the largest coefficients. However, for the
nitrogen “lone pair” orbital, this ratio changes by a factor of
∼10 as one changes the structure of the peptide group from
planar (where the resonance form in Figure 2 is important) to
nonplanar (where it is less important). If the virtual space
associated with an orbital changes as a function of geometry,
qualitative inconsistencies are introduced into the relative
energetics. Consequently, it is necessary to define this orbital
as always delocalized between the C and N atoms, independent
of geometry. This is easily done with software that recognizes
chemical groups. The delocalization to the peptidic carbon is
computationally inexpensive and does not introduce superposi-
tion error, as the atoms are at fixed distance in different
conformations. The major difficulty is identifying the set of
chemical groups for which problems exist and taking the
appropriate action. While other methods for automatically
choosing the localization scheme exist,66 they have not been
tested extensively on a wide variety of molecules, and we do
not believe that they would be immune to the sort of problem
discussed here.

The most difficult cases for which to specify localization are
transition state structures, where we have found it essential to
delocalize bonds that are being broken and formed over a
minimum of three centers. Again, the key point is that the
localization scheme must remain consistent between any
calculations comparing relative energies. In some cases, the
relevant delocalization patterns can be identified by numerical
amplitudes. However, this is still an ongoing area of research.
The results we have obtained to date for transition states follow
well defined rules and hence indicate that development of a
successful scheme is possible. However, there is no guarantee
that what has been developed will work for every new case
that comes up. This is the price that one pays for using localized
orbital approaches, with their attendant benefits.

For GVB-LMP2, additional difficulties are manifested; these
are discussed in detail in ref 14. Even greater delocalization of
the virtual space than in LMP2 is necessary to obtain an accurate
treatment of hydrogen bonding and resonance. Again, automatic
protocols based upon chemical groups have been developed,
and have been successful to date as is shown below. However,
exploration of these effects is just beginning and there will no
doubt be more surprises to come in the future.

5. Benchmark Studies of Chemical Energetics: A
Comparison of DFT, LMP2, and GVB-LMP2

The standards for assessment of quantum chemical methods
against experimental data were established by the Pople group
more than 20 years ago. First, Pople insisted upon using

Figure 2. Resonance in the amide group occurs via the transformation
of the nitrogen lone pair to a bond pair N-C and subsequent charge
transfer to the oxygen of the carbonyl group.

Figure 3. Two conformers of glyoxylic acid. The hydrogen bonded
ground state. (c) A resonance structure of (b) which stabilizes the
internal hydrogen bond.
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quantum chemical methods that could be defined as a model
chemistry:67 an automatic protocol that could be applied to an
arbitrary molecule without further human intervention. Methods
such as Hartree-Fock, Møller-Plesset perturbation theory,
coupled cluster based methods, and the various versions of
density functional theory, in conjunction with a specified basis
set, clearly qualify as model chemistries. More complex
procedures built out of these methods, such as G2 theory16,37

or the CBS procedures of Petterson and co-workers,68 have also
been proposed as model chemistry, although the quantum
chemical calculations are supplemented by a small number of
adjustable parameters.

Given a model chemistry, the next step is to evaluate
performance for a well defined chemical property, by comparing
with experimental data. Such tests are invariably carried out
for small molecules, as reliable experimental results are easier
to come by in quantity for small molecules than for large. A
critical mass of data is necessary to draw substantive conclu-
sions, and the experimental data must itself be of sufficient
accuracy to make the comparison meaningful.

In this section, we consider two important energetic proper-
ties: bond energies and conformational energies. For the first
of these we compare69 to the extended G2 data base that was
recently studied with G2 and B3-LYP theories.16 In addition
we have recently studied70 a larger system, isomers of C20, that
we compare to quantum Monte Carlo results. For conformational
energies, there is no standard test suite that is as well accepted
as the G2 database. However, Halgren and coworkers have
recently assembled71 a 36 molecule database of small and
medium sized organic molecules for which experimental data
is available. This database can serve the same role as the G2
database for conformational energetics, which is to provide an
initial assessment of the statistical performance of quantum
chemical methods. We use this database as a standard in the
results presented below.

5.1. Thermochemistry: The J2 Model.The calculation of
heats of formation poses a challenge to quantum-chemistry (QC)
methods. The G2 theory uses quadratic configuration interaction
(QCI)7 and several basis set extension calculations at various
levels of Møller-Plesset (MP) perturbation theory. The G216,37

theory uses experimental thermochemical values to generate
enthalpies of formation to be tested against reliable experimental
data. The current G2 data base16 consists of 148 molecules,
which were used to test G2 theory as well as various DFT
methods.

The Jaguar-2(J2) model uses the localized perturbation
approach, which scales computationally with system size much
lower than the calculations involved with the G2 theory. In the
J2 theory, atomization energies are calculated using the general-
ized valence bond-localized Møller-Plesset (GVB-LMP2)
wave function.14 GVB-LMP2 uses the GVB-PP wave function
as the reference for the localized perturbation(LMP2)9,10 treat-
ment. We have implemented GVB-LMP2 in conjunction with
the pseudospectral(PS) quantum mechanical methodology. The
PS version of a GVB-LMP2 calculation scales with system size
as N3 as opposed to the MP4 and QCISD(T) calculations of
the G2 theory which scale asN7. In addition, the J2 theory has
a single basis set extension calculation using LMP2.

In order to obtain reasonable agreement of the theory with
experiment, all the theories examined here need to use a
parameterized empirical correction. G2 theory uses a single
correction parameter for each electron pair. In J2 theory the
use of GVB-LMP2 introduces a somewhat bigger imbalance
for treatment of theσ bond relative toπ bond. Theπ bonding

is underestimated relatively toσ bonding. This imbalance
suggests using an additional correction forπ bonds. Thus J2P3
theory uses a three-parameter correction composed fromσ bond
andπ bond parameters and an additional parameter to account
for the difference of lone pairs between the molecule and the
separated atoms. This correction method, which has a total of
three adjustable parameters, was first suggested by Martin.72

An extended correction scheme, based on the results, is
introduced in our final J2 theory.69 In this extended correction
scheme 2 additional parameters are being used(J2P5). The J2P5
offers a significant improvement of the statistical performance.
The additional parameters have been introduced by careful
examination of the J2P3 results. The two parameters account
for further imbalance of treatment of bonds in strained systems
compared to “regular” bonds. Thus, the J2P5 model introdues
a correction by using a parameter for carbon-carbonσ bond in
three-member rings and a parameter forπ bonds in three-,
four-, and five-member rings. These are well-defined parameters.

The J2 theory involves a GVB-LMP2/cc-pVTZ(-f) calcula-
tion. A single-basis-set correction term is added by a LMP2
calculation at the cc-pVTZ++ level. The J2 energy is given
by

EC is a parameterized correction term, given by

wherePpair, Pσ, andPπ are 3 correction parameters, and n1, n2,
and n3 describe the frequency of appearance of the pair types
in the system considered. The atomization energy is obtained
by

The J2 performance offers a significant improvement in
accuracy over the current version of G2 theory, despite
qualitatively lower computational cost. The deviation from
experiment in enthalpies of formation for the J2, G2, and B3-
LYP theories are compared in Table 9. The B3-LYP is the most
accurate DFT method reported in the G2 reference. Becke27 has
recently optimized a generalized gradient-corrected exchange-
correlation functional to the G2 test set. The new functional
was shown to perform better than the B3-LYP, with a MAD of
1.78 kcal/mol and maximum deviation of 8.9 kcal/mol compared
to 1.58 and 8.2 of the G2 theory; however, we do not present
these results here.

Tables 8 and 9 summarize the performance of three different
computational methods: G2, J269, and B3-LYP for calculating
heats of formations (at 298K) from atomization energies as
applied to the extended G2 data base.16 The standard enthalpies
of formation and temperature factors were taken from ref 16.
We present results for 67 closed-shell molecules containing first
row atoms. Preliminary results indicate that the cc-pVTZ basis
sets used in our method need to be enhanced for the second
row. Also only closed shell systems have been considered,
because of the use of GVB-PP. (The COF2 molecule has been
excluded from the considerations, attributing the anomalously
large errors displayed by all methods for this molecule to poor
experimental data.) The GVB-PP uses only the PP spin
eigenfunction(SEF), the inclusion of other SEF is important for

EJ2 ) E[GVB - LMP2/cc- pVTZ (-f)] +
E[LMP2/cc - pVTZ + +] -

E[LMP2/cc - pVTZ (-f)] + EC (22)

EC (n1, n2, n3;Ppair, Pσ, Pπ) )
n1/Ppair + n2/Pσ + n3/Pπ (23)

Energy (molecule)) EJ2 (molecule)- ∑EJ2 (atoms) (24)
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open-shell systems. The restricted configuration interaction(RCI)
includes all relevant spin couplings.41 It is the intention to use
GVB-RCI-LMP2 instead of the GVB-LMP2 in order to extend

the applicability to the open shell systems. It is predicted to
improve the results of the closed shell cases as well. Work in
this direction is currently in progress.

The B3-LYP results are reasonably accurate with an average
error of 2.1 kcal/mol and maximum error of 7.1 kcal/mol.
Relative to correlated ab initio methods, the low cost and ease
of applicability across the periodic table are powerful motiva-
tions for selecting this approach. However, as we discuss below,
the success of B3-LYP may not extend uniformly to larger
systems.

The average 1.07 kcal/mol error of the J2P3 method displayed
in Table 9 is superior to that of G2 theory, 1.63 kcal/mol, a
result that we attribute primarily to elimination of large errors
in fluorine compounds arising from BSSE69 by the localized
treatment incorporated in J2 theory. The J2P5 theory introduces

TABLE 8: Errors in Heats of Formation (kcal/mol) as
Calculated by G2, J2, and B3-LYP Theories

energy deviation (kcal/mol)

molecule’s name J2P3 J2P5 G2 B3LYP

CH4 0.54 0.39 0.7 1.6
NH3 0.58 0.91 -0.2 3.5
H2O 0.75 0.97 0.3 -1.3
HF 1.52 1.63 1.0 -1.6
C2H2 0.73 0.36 -1.6 -2.5
C2H4 1.93 1.55 -0.2 0.6
C2H6 0.65 0.26 0.5 0.6
HCN 0.43 0.55 0.3 0.0
H2CO 0.46 0.45 2.0 0.4
CH3OH -1.30 -1.34 1.4 0.1
N2 -0.69 -0.10 -1.3 -1.4
N2H4 -0.73 -0.17 -0.9 6.3
H2O2 0.71 1.17 -0.2 -1.8
F2 1.45 1.69 -0.3 -2.6
CO2 -0.14 -0.03 2.7 -0.2
CF4 0.78 0.64 5.5 -4.5
NF3 -2.49 -1.91 3.7 4.0
OF2 -1.15 -0.67 0.5 -0.4
C2F4 2.38 2.01 8.2 3.2
CF3CN -0.25 -0.39 4.8 -3.7
propyne 0.99 0.37 -1.5 -1.9
allene 2.10 1.48 -0.9 1.9
cyclopropene -2.13 0.65 -2.9 -3.2
propene 1.37 0.74 -0.5 -0.6
cyclopropane -0.91 0.16 -0.9 -2.2
propane 0.36 -0.29 0.4 -1.5
trans-1,3-butadiene 0.81 -0.06 -1.7 -1.5
dimethylacetylene -0.05 -0.92 -2.1 -2.4
methylenecyclopropane 1.29 2.13 0.3 0.0
bicyclo[1.1.0]butane -3.64 -1.70 -3.0 -7.1
cyclobutene -1.53 -0.84 -2.9 -6.1
cyclobutane -0.18 -1.19 -0.2 -5.2
isobutene 0.88 -0.01 -0.6 -3.1
trans-butane 0.03 -0.87 0.4 -3.7
isobutane -0.18 -1.08 0.3 -4.8
spiropentane -2.57 -0.28 -1.4 -5.4
benzene 1.41 -0.06 -3.9 -4.5
difluoromethane 1.16 1.02 3.1 0.0
trifluoromethane 1.24 1.10 4.3 -2.2
methylamine 1.07 1.16 0.0 3.2
acetonitrile 0.48 0.33 -0.1 0.6
methylnitrite 0.43 0.75 2.7 1.3
formic acid -0.46 -0.36 2.0 -0.9
methyl formate 0.93 0.77 3.8 -0.2
acetamide -1.41 -1.46 0.2 1.6
aziridine -0.66 -0.34 -0.3 1.0
cyanogen -1.61 -1.37 -1.5 -0.4
dimethylamine -0.49 -0.66 0.3 2.0
trans-ethylamine 1.05 0.88 0.8 2.2
ketene -0.81 -1.07 0.8 2.4
oxirane 1.49 1.70 1.3 -1.4
acetaldehyde 0.66 0.39 1.3 -0.3
glyoxal 1.50 1.36 2.9 -1.6
ethanol 0.89 0.60 1.0 -1.9
dimethylether -0.02 -0.31 2.0 0.0
vinyl fluoride 1.33 0.95 1.7 1.5
cyanoethylene -1.50 -1.88 -2.7 -2.0
acetone 1.01 0.49 1.1 -2.0
acetic acid 0.13 -0.02 1.5 -2.6
acetyl fluoride -1.20 -1.47 2.0 -1.5
isopropyl alcohol 0.93 0.40 1.2 -4.5
methylethyl ether -0.64 -1.18 2.3 -1.5
trimethyl amine -0.53 -0.95 1.4 0.2
furan cyclic -1.15 1.37 -1.0 -4.2
pyrrole planar -3.90 -1.28 -2.2 -0.8
pyridine cyclic 2.42 1.42 -2.2 -0.2
H2 0.86 0.97 1.1 1.0

TABLE 9: J2, G2, and B3-LYP Average and Maximum
Deviation (kcal/mol) from Experimental Heats of Formation.
The COF2 Case, where Experiment is Questioned, Has Been
Excluded

method average deviation maximum deviation

J2P3-GVB-LMP2 1.07 3.9
J2P5-GVB-LMP2 0.87 2.1
G2-QCISD(T) 1.63 8.2
B3-LYP 2.10 7.1

Figure 4. (a) Ring isomer of C20. (b) Bowl isomer of C20. (c) Cage
isomer of C20.

TABLE 10: Relative Energies of C20 Isomers (kcal/mol),
Bowl as Reference, among ab Initio Components of the J2
Theory, the J2 Composite Results, QMC, and DFT

method bowl ring cage

HF cc-pVTZ(++) 0.0 -32.6 69.2
LMP2 cc-pVTZ(-f) 0.0 21.9 61.6
LMP2 cc-pVTZ(++/3d1f) 0.0 39.3 42.6
LMP2 cc-pVTZ(++/3d2f) 0.0 41.7 32.8
GVB cc-pVTZ(-f) 0.0 -5.0 99.1
GVB-LMP2 cc-pVTZ(-f) 0.0 23.8 63.0
J2 cc-pVTZ(++/3d2f) 0.0 26.8 51.0
QMC 0.0 23( 4.6 52( 4.6
B3-LYP cc-pVTZ(-f) 0.0 -5.8 37.4
B-LYP cc-pVTZ(-f) 0.0 -20.9 45.7
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a further improvement with an average error of only 0.87 kcal/
mol. The higher reliability of J2 theories over the G2 is
demonstrated with the much lower max. deviation. J2P5 theory
has a 2.1 kcal/mol for the max. deviation while the G2 theory
has 8.2 kcal/mol (J2P3 has 3.9 kcal/mol for maximum devia-
tion). The computational effort of GVB-LMP2 based J2 theory
scales asN3 rather thanN7 in G2 and, hence, as illustrated
below, is applicable to large molecules using present day
computers. Furthermore, if one is interested in the bond energy
of only one bond in the molecule (as opposed to the atomization
energy), correlation at the GVB level can be restricted to a small
part of the molecule, thus saving considerable computational
effort and reducing the scaling further.

We have applied70 J2 theory to the problem of determining
the relative energies of ring, bowl, and cage shaped isomers of
C20 displayed in Figure 4. Timings for the most expensive case,
the cage isomer for which cutoffs are the least effective, are
presented in Table 7. The relative energies of the clusters as
predicted by J2 theory in Table 10 are in quantitative agreement
with the highly accurate quantum Monte Carlo results of ref
73. In contrast, as first pointed out in ref 73 and displayed in
Table 10, the DFT methods differ dramatically from these
results. The close agreement of the highly correlated J2 and
quantum Monte Carlo methods suggests that the DFT methods
have substantial errors for this problem.

Further studies are necessary to determine if this large
disparity with DFT is due to the size of the system or the
treatment of relative correlation between isomers. Preliminary
results for the calculation of heats of formation using isodesmic
reactions74 suggest that the problem is that DFT makes large
errors for pi bonds. Thus a tentative explanation is that since
the C20 isomers differ in the number ofπ bonds the DFT errors
become apparent for this problem.

5.2. Conformational Energies.Table 11 presents results for
35 conformational energy differences for molecules in the
database assembled by Halgren and co-workers,71 computed via
HF, DFT, LMP2,13 and GVB-LMP214 methods. Since the
electron pair number is conserved in all these cases, and the
molecules are closed shell, no corrections are required for the
GVB-LMP2 calculations. MP2/6-31G* geometries were used
for the HF, LMP2, GVB, and GVB-LMP2 calculations, while
the DFT results reproduced from ref 71 used DFT geometries.
All values in Table 11 have been corrected for zero-point
energies using 6-31G* Hartree-Fock frequencies calculated at
MP2/6-31G* geometries. Note that the GVB-LMP2 values are
slightly different than those published previously14 since in these
results we have delocalized the lone pairs to atoms bound to
the lone pair atom. In addition we have refined the grids and
dealiasing sets. The experimental numbers used are the same

TABLE 11: Relative Conformational Energies (kcal mol) from DFT (NLSDA), HF (HF), local MP2 (LMP2), GVB, and
GVB-LMP2 Calculations with a cc-pVTZ(-f) Basis Set

molecule ZPE correction NLSDAa HF LMP2 GVB GVB-LMP2 exptl

acrolein (c-t) 0.02 2.25 2.37 1.93 1.84 1.89 1.70
1,3-butadiene (g-t) -0.02 3.78 3.42 2.92 2.05 2.65 2.89
butane (g-t) 0.09 0.76 1.14 0.73 1.09 0.80 0.67
butanone (s-c) 0.20 1.98 1.52 1.30 1.30 1.25 1.07
1-butene (c-s) 0.10 0.22 0.78 0.47 0.94 0.41 0.22
2-butene (c-t) 0.11 1.04 1.72 1.31 1.72 1.56 1.20
chloropropane (a-g) -0.04 -0.33 -0.38 -0.09 -0.49 -0.23 0.09
cyclohexane (tb-ch) -0.03 6.12 6.85 6.10 6.17 5.63 5.50
cyclohexanol (ax,C1-eq,C1) 0.14 1.10 0.92 0.57 0.88 0.73 0.58
cyclohexylamine (ax-eq) 0.14 1.60 1.36 0.75 1.27 0.97 1.15
1,2-dichloroethane (g-a) -0.03 1.51 1.93 1.57 1.78 1.40 1.08
diethyl ether (a,g-a,a) 0.03 1.16 1.86 1.39 1.81 1.54 1.14
1,2-difluoroethane (t-g) 0.01 1.15 0.14 0.56 -0.17 0.50 0.56
2,3-dimethylbutane (g-a) -0.01 0.35 -0.11 0.02 -0.11 -0.09 0.05
dimethyl dioxane (eq,ax-eq,eq) 0.15 1.31 1.40 0.79 1.24 0.98 0.92
ethanol (g-a) 0.01 -0.33 0.19 0.07 0.22 0.17 0.12
ethyl formate (c,g-c,t) 0.11 0.49 0.80 0.26 1.10 0.56 0.19
fluoropropane (a-g) -0.07 -0.02 -0.06 0.09 -0.08 0.09 0.35
formic acid (t-c) -0.23 4.38 4.76 4.36 4.07 4.41 3.90
glyoxylic acid (t,c-t,t) -0.17 1.25 0.28 0.93 -0.41 0.79 1.20
isoprene (g-t) -0.23 3.11 2.51 2.56 1.06 2.13 2.65
isopropanol (a-g) -0.02 -0.09 0.25 0.22 0.26 0.24 0.28
isopropylamine (g-a) -0.05 0.29 0.28 0.31 0.27 0.30 0.45
methoxycyclohexane (ax,C1-eq,C1) 0.15 0.51 0.92 0.19 0.90 0.43 0.55
2-methoxytetrahydropyran (eq-ax) -0.24 0.87 0.31 1.20 0.45 1.12 1.05
N-methylacetamide (c-t) 0.19 2.52 2.50 2.28 0.65 2.19 2.30
methyl acetate (c-t) -0.08 7.12 8.81 7.60 8.11 7.82 8.50
methylcyclohexane (ax-eq) 0.18 2.59 2.66 1.87 2.41 1.94 1.75
methyl ethyl ether (s-t) 0.02 1.26 1.80 1.38 1.75 1.48 1.50
N-methylformamide (c-t) 0.12 1.70 1.01 1.12 1.16 1.43 1.40
methyl formate (t-c) -0.48 4.25 5.03 4.76 4.93 4.97 4.75
N-methyl piperidine (ax-eq) 0.03 3.18 4.11 3.73 3.99 3.62 3.15
methyl vinyl ether (s-c) -0.53 1.94 1.02 2.13 -0.07 1.60 1.70
piperidine (ax-eq) -0.08 0.56 0.74 0.71 0.69 0.72 0.53
propionaldehyde (s-c) -0.03 0.79 0.85 0.91 0.54 0.77 0.67

absolute average error 0.34 0.49 0.20 0.56 0.21
RMS error 0.42 0.57 0.26 0.73 0.25

a All values are corrected with HF/6-31G* zero point energies calculated at HF/6-31G* minima. HF, LMP2, GVB, and GVB-LMP2 calculations
used the cc-pVTZ(-f) basis; the NLSDA calculations used a mixed double and tripleú plus polarization basis. Mean absolute and RMS errors
exclude methyl acetate, for which the experimental error is(1 kcal/mol. Conformation abbreviations are as follows (g) gauche, (a) anti, (t) trans,
(c) cis, (s) skew, (eq) equatorial, (ax) axial.
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as those in ref 75 except for chloropropane, for which we chose
the newer experimental number of ref 76.

Hartree-Fock calculations for individual molecules are often
reasonable, and for molecules of this size are invariably within
1-2 kcal/mol of the experimental results. However, this is not
a particularly good performance when the experimental numbers
are also of this magnitude. For many applications, such as
structure-based drug design, a higher level of accuracy is
desirable. Furthermore, for larger molecules, such as peptides,
errors in conformational energies of individual functional groups
can add, leading to highly erroneous results for a conformational
analysis.

The DFT results provide a statistical improvement over HF,
but there are still a significant number of large errors (e.g.,
greater than 0.5 kcal/mol) and some cases in which the sign of
the energy difference is incorrect. LMP2 results provide a further
improvement when a large basis set is used. 6-31G** LMP2
results are actually no better than Hartree-Fock, but when the
cc-pVTZ(-f) basis is used, performance improves noticeably.
However, there are still a number of large discrepancies with
the experimental data, such as for cyclohexane and methyl vinyl
ether. The zero-point-energy-corrected GVB-LMP2 results,
however, bring nearly all of the results into good agreement
with experiment.

6. Conclusions

When the methodological advances discussed above are
combined with the explosive increase in performance of
computational hardware, a revolution in the applicability of first
principles electronic structure methods to complex chemical
problems is well within sight in the next 5 years. Even with the
limitations of current functionals, DFT methods are proving to
be very useful in a wide variety of applications, for example
materials science problems in which estimates of thermochemi-
cal pathways are required. For problems where greater precision
is required in energetics, DFT may still be the method of choice
for carrying out the necessary geometry optimization. Further-
more, we can expect new functionals to be developed that will
overcome many of the problems associated with those that are
presently available. The size and complexity of molecular
structures that can now be addressed via DFT calculations on
a routine basis is truly remarkable.

On the other hand, there are a significant number of problems
for which current DFT methods are not sufficient accurate to
answer the chemical questions of interest. For example, con-
formational energetics are crucial to modeling biological
systems; DFT calculations do not have the required level of
precision, and furthermore are qualitatively deficient in that they
do not properly compute dispersion interactions. For these
problems, localized correlation methods provide a promising
and cost effective alternative. Additionally, one can combine
the two approaches, for example, by calculating geometries via
DFT methods and then performing single-point LMP2 or GVB-
LMP2 calculations. This protocol is in fact likely to be the
method of choice in many cases, although tests need to be
carried out to establish levels of accuracy for specific protocols.

A great deal of additional experimentation needs to be carried
out to understand the performance of both types of methods
for a wide range of problems and molecules. For example, we
have not discussed here the calculation of transition state
energetics, a more demanding application than either bond
energies or conformational energies, and one which poses
qualitative difficulties for all electronic structure methods. There
is some evidence that performance for reaction energies, as

opposed to atomization energies, does not follow the results
presented in section 5.1; it is also far from clear that one can
transfer estimations of accuracy from the small molecules in
the G2 database to larger systems where there are strong
resonance effects, interactions of multiple functional groups,
and dispersion contributions to the total energy. Transition metal
chemistry has its own challenges, not the least of which is the
greater difficulty in obtaining high quality experimental data
for benchmark comparisons. All of these challenges will be
addressed during the next 5 years, at which point we should
have a much better idea of the limits of performance of the
methods discussed above, as well as other competing methods.
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